Structure of a Murine Norovirus NS6 Protease-Product Complex Revealed by Adventitious Crystallisation
نویسندگان
چکیده
Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro), NS7(pol)) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro), which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro) within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro) C-terminus is formed in vivo by NS6(pro) processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro) specificity.
منابع مشابه
Structure determination of Murine Norovirus NS6 proteases with C-terminal extensions designed to probe protease–substrate interactions
Noroviruses are positive-sense single-stranded RNA viruses. They encode an NS6 protease that cleaves a viral polyprotein at specific sites to produce mature viral proteins. In an earlier study we obtained crystals of murine norovirus (MNV) NS6 protease in which crystal contacts were mediated by specific insertion of the C-terminus of one protein (which contains residues P5-P1 of the NS6-7 cleav...
متن کاملStructure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity
The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not cult...
متن کاملA Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage*
The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cle...
متن کاملFunctional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease.
Sapovirus is a positive-stranded RNA virus with a translational strategy based on processing of a polyprotein precursor by a chymotrypsin-like protease. So far, the molecular mechanisms regulating cleavage specificity of the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the predicted forms of the viral protease, the 3C-like protease...
متن کاملNorovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors*
Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012